8(x^2+5)=2(x^2+26)

Simple and best practice solution for 8(x^2+5)=2(x^2+26) equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 8(x^2+5)=2(x^2+26) equation:



8(x^2+5)=2(x^2+26)
We move all terms to the left:
8(x^2+5)-(2(x^2+26))=0
We multiply parentheses
8x^2-(2(x^2+26))+40=0
We calculate terms in parentheses: -(2(x^2+26)), so:
2(x^2+26)
We multiply parentheses
2x^2+52
Back to the equation:
-(2x^2+52)
We get rid of parentheses
8x^2-2x^2-52+40=0
We add all the numbers together, and all the variables
6x^2-12=0
a = 6; b = 0; c = -12;
Δ = b2-4ac
Δ = 02-4·6·(-12)
Δ = 288
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{288}=\sqrt{144*2}=\sqrt{144}*\sqrt{2}=12\sqrt{2}$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-12\sqrt{2}}{2*6}=\frac{0-12\sqrt{2}}{12} =-\frac{12\sqrt{2}}{12} =-\sqrt{2} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+12\sqrt{2}}{2*6}=\frac{0+12\sqrt{2}}{12} =\frac{12\sqrt{2}}{12} =\sqrt{2} $

See similar equations:

| 3n+2n+12+18=180 | | 6+3x=73 | | 627x-595=321 | | 8+7x+3x=8 | | 8+2n/10=n | | 6+2x=8+3x | | 50=1/2h(7+3) | | -16(t-1)(t-3)=0 | | 3+b=1/2+1b/2 | | 2p+8=-4 | | 85x+930=15x | | 2(y+3)=-4(4y-1)+4y | | X-2(2-3/2x)=2(4-x)+ | | 3/4(1/3-3)+1/2=1/2x+5 | | 2x+7=3x-x+4 | | M=15.75+3.2d(3.2) | | 2n+12=189 | | 16x+320=2100 | | 40x+30=50x | | 3(w-3)-5=-4(-5w+2)-7w | | 5/n=10/30 | | 718+6x=1510 | | 40x-30=55 | | 55=76y | | x+.5=3.2 | | 2x-1+5x=13 | | 5(x-2)+12=150 | | 3x(x-2)=x(3x+2) | | 45.3m+5=35 | | 2+2(y+3)=-7+2y | | (3/5)n+(9/10)=(-1/5)n-(23/10) | | 18x×6x15=312 |

Equations solver categories